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Abstract

A new and simple method for solving linear, inverse heat conduction problems using temperature data containing
significant noise is presented in this paper. The method consists in a straightforward application of singular-value
decomposition to the matrix form of Duhamel’s principle. A physical interpretation of the method is given by
discussing the frequency-domain interpretation of the decomposition. Basically, rows and columns are removed
from the decomposed matrices that are associated with small singular values that are shown to be associated with
frequencies where the signal-to-noise ratio is small. The technique is demonstrated by considering a standard one-di-
mensional example. Advantages of the new method are reduction in matrix size, robust treatment of noisy tempera-
ture data, optimal in the least-squares sense, and lack of ad hoc parameters. © 2001 Published by Elsevier Science

Ltd.

1. Introduction

In many situations it is difficult to analytically
determine the heat transfer that enters or leaves a
heat conducting material. Thermocouples and simi-
lar devices, however, allow accurate temperature
measurements to be taken in most situations. Such
temperature measurements provide the data necessary to
determine the surface heat transfer by employing an
inverse technique.

Inverse heat conduction problems often are ill-posed
problems since small errors in temperature measure-
ments can cause large errors in calculated heat transfer
[2]. This problem results from the thermal-damping
nature of the heat-conducting material. When a step
change in the interfacial heat flux is applied to a heat-
conducting material, the temperature response within
the material is smooth because of thermal damping.
Low-level, broadband noise corrupting the temperature
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data can result in an unreasonable solution for calcu-
lated heat flux.

One of the earliest inverse methods was proposed by
Stolz [1] to solve a quenching problem involving a
spherical geometry. The method proposed by Stolz used
a single future- temperature measurement from a single-
temperature sensor to determine the previous heat flux
in a time-sequential manner. This process is conducted
analytically resulting in a pulse-sensitivity coefficient
matrix for heat flux. Since the exact method employs a
single future-temperature during each time-step, the
method becomes unstable if the time-steps are not suf-
ficiently large. To overcome the possible instability,
Beck [2] introduced methods incorporating multiple fu-
ture temperature measurements. By incorporating data
from multiple future time-steps the gain coefficient may
vary reducing possible instabilities. More recently Beck
[3] has compared the future time-step approach with
other inverse methods. Other authors have used meth-
ods based on future time-step and parameter-estimation
methods proposed by Beck to solve a wide variety of
inverse problems [4-7]. Frankel and Keyhani [8] present
a global time solution employing a weighted-residual
methodology which is proposed that solves the inverse
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Nomenclature

specific heat (J/kg °C)

time-step (s)

thermal conductivity (W/m °C)
matrix of spatial derivatives

heat flux pulse magnitude (W /m?)
exponential matrix = e*"

number of nodes

number of time-steps

vector locating heat flux

discrete series matrix

heat flux vector in time (W /m?)
matrix containing singular values
time (s)

node temperature (°C)
temperature vector (°C)
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T time rate of change in temperature vector
(°Cls)

U matrix containing orthonormal columns

\% matrix containing orthonormal columns

X position (m)

Subscripts

i node location

new reduced-order matrices

Superscript
Jj time indicator

Greek symbols

thermal diffusivity (m?/s)

temperature pulse response matrix
density (kg/m?)

temperature vector for all time at a given
location (°C)

[==Jas} e R

problem over the entire time domain. Recently a number
of authors have proposed methods for solving the in-
verse problem based on dynamic programming and
control theory.

Blum [9] converts the heat transfer problem into a
dynamic system with an observer and uses the system’s
frequency response to determine an optimal solution to
the inverse problem. The work proposed by Blum shares
much similarity to observer modeling done earlier by
Marquardt [10]. Bayo uses a finite-element approach
incorporating data from the frequency domain using
discrete Fourier transforms to obtain the inverse solu-
tion [11]. The model is extended to the time domain
through the use of a two-sided convolution integral. The
method has the advantage of being computationally
efficient and does not require a stabilization procedure
to be defined. The method does require a digital-filtering
technique to be employed to arrive at the inverse-prob-
lem solution. Moulin [12] extended the work presented
by Bayo to solve nonlinear inverse problems by modi-
fying the model.

Trujillo and Busby [13] use a dynamic-programming
approach incorporating a smoothing parameter and
least squares to obtain solutions for inverse heat con-
duction problems. The method proposed by Trujillo and
Busby is based on work previously done by Tikhonov
and is recognized as Tikhonov’s method [14]. Since the
observer, smoothing-parameter or digital- filtering
technique is often difficult to determine, additional
authors have used Kalman filtering approaches to solve
the inverse problem.

The Kalman filter is a filtering technique very widely
used to solve inverse heat conduction problems [15].
Tuan uses the Kalman filter and a real-time least-
squares algorithm to solve a two-dimensional inverse

heat conduction problem [16]. Ji successfully demon-
strated the Kalman filter on a one-dimensional problem
with errors in the measured temperatures by comparing
the calculated heat transfer with heat transfer measure-
ments taken experimentally [17].

Ozisik and Orlande [18] report several additional
methods that can be employed to solve inverse heat
conduction problems. One of the methods reported on is
the conjugate gradient method. This method has the
advantage of being able to solve both linear and non-
linear problems in a relatively short time period. Colaco
and Orlande [19] have compared several different con-
jugate gradient method approaches when applied to in-
verse heat conduction problems. Huang and Wang use a
conjugate gradient approach to solve a three-dimen-
sional problem [20]. However, the algorithm is compu-
tationally intensive, may require large amounts of
memory and is unnecessarily complex for the linear case.
The methods derived to date either require much itera-
tion and/or memory, the use of ad hoc parameters, or
are based on unnecessarily complex explanations of a
rather straightforward linear analysis problem. A new,
straightforward, simple and effective method is proposed
below.

In this paper, the one-dimensional, linear inverse heat
conduction problem is solved using the matrix form of
Duhamel’s principle. A unit heat flux pulse is applied to
a linear conduction model and the temperature response
is determined. The system response to the unit heat pulse
is recorded and employed to investigate the physical
problem. A Toeplitz matrix (constant along the diag-
onals) is assembled using the unit heat pulse response as
the first column. Singular-value decomposition is per-
formed on the matrix. Then, the singular values are
compared and the matrix is reduced until properly
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conditioned. The primary result of the matrix reduction
is shown to be filtering of high-frequency fluctuations in
the calculated heat flux data. An important character-
istic of this method is a pulse response that can be ob-
tained from any acceptable linear conduction model.
Thus, the proposed method only requires unit pulse
temperature response data that can be easily obtained
from accepted software packages. The latter statement
becomes increasingly important when extending the re-
sults of this work to two- or three-dimensional domains.

The new method allows three advantages when
solving linear inverse heat conduction problems. First,
the method is able to recover heat flux profiles from
temperature data containing a significant amount of
noise. Second, the method is based on a unit pulse-
temperature response that is defined by the physical
problem. Therefore, the solution is only determined by
the physical problem and the signal-to-noise ratio.
Third, the method provides a solution that is optimal in
the least-squares sense [22].

2. Development of the matrix-transform technique

A one-dimensional heat conduction problem, Fig. 1,
is used to demonstrate the matrix-transform method.
Initially the homogeneous material is at a uniform initial
temperature, 7y (75 = 0). A transient heat flux is applied
at the left boundary (x = 0). The right boundary (x = L)
is insulated, so no energy is lost. This is expressed
mathematically

PT 1/0T
or
k| — | =q(¢ =0, t>0 2
(5)=a00 x=0. >0 @
or
R =7
- 0, X , t>0, (3)
14 Insulation
ac) >
g Homogeneous Heat
4 Conducting Material
—» x=L
1m)
x=0

Fig. 1. One-dimensional heat conduction problem.

T(x,00=T, 0<x<L, t=0. (4)

In order to solve the equations using finite-difference
approximations, the heat conducting material is broken
up into finite control volumes. Using the above equa-
tions, energy balances are performed on each control
volume to determine the appropriate temperature re-
lationship at each node. The resulting finite-difference
equations are written in matrix form as

T = KT + Rq, (5)

where for six nodes

-2 2 0 0 0 0 7
1 =21 0 0 0
o 01 =21 0 0
K=(-—
(Ax2> 0 0 -2 1 o0 |
0 0 0 1 =21
L0 0 0 0 2 -2

[Ti(1) D) T T(t) Ts(t) T(0)]',
(4) ooooor,

In a standard (direct) heat transfer problem, the K, R and
q terms are known and T is determined through integra-
tion. For the inverse problem, K is known with some or all
of the temperatures, T, but the forcing term q is unknown.
To solve the inverse problem, the continuous state—space
relationship, Eq. (5), is converted into a discrete-time
model using an appropriate numerical algorithm

T =MW + P(h)¢, (6)

where /1 is the time-step. Eq. (6) defines both the
direct and inverse heat conduction problems. By ap-
plying a unit heat pulse at the boundary, (6) can be
used to generate Duhamel’s integral in discrete form
as
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where 7/ is the temperature at node i for time j due to
the heat pulse applied at the boundary at time zero, ¢’ is
the actual heat flux at the boundary at time j and ¢/ is
the actual temperature at node i for time j. 70 and T
were omitted from (7) because from it takes two time-
steps for the pulse to affect the temperature at the lo-
cation of interest. Since ¢/ enters the equation for 6/
through the term T! - ¢, it follows that 7, 7;' = 0.
Eq. (7) can be expressed in matrix form as

®q = 0. (8)

The inverse heat conduction problem (IHCP) can be
cast as solving for q given @ and 0. Because ® is ill
conditioned, the IHCP cannot be solved by direct in-
version. A variety of methods have been proposed to
solve the inverse problem. However, a widely accepted
method for solving problems involving ill-conditioned
matrices is to employ singular-value decomposition
(SVD) to compute the pseudo-inverse of @ [21]. To the
authors’ knowledge, this technique, that is well under-
stood, easily implemented and direct, has not been em-
ployed to solve IHCPs. The rest of this article focuses on
the physical meaning of each step in the SVD-pseudo-
inverse procedure to provide insights into the THCP.
First, a brief overview of SVD is provided.

The decomposition consists in expressing @ as a
product of two orthonormal matrices U and V, and a
diagonal matrix S as follows:

® =USV". 9)

The diagonal elements of the diagonal matrix S are
called “‘singular values” and are usually arranged inside
S in descending order. The condition number of a ma-
trix is defined by

_ largest singular value
" smallest singular value’

(10)

Matrices with large values (>1) of condition number
are ill conditioned. The matrix @ can be “recon-
ditioned” by eliminating rows and columns from S
corresponding to small singular values. If S is reduced in
size, the corresponding U and V matrices must be re-
duced by the same amount. For example, assume there
are 36 temperature readings at a given location within
the system

0 = U S \'a q
36 % 1 3636 36x36 36x36 36x1.

(11)

The singular-value matrix is used to reduce the model
size by comparing the singular values. Columns and
rows of S containing relatively small singular values are
removed until the condition number is appropriate.
Since S multiplies U and VT, the corresponding columns
removed from S are removed from U and V. Assuming

all but four singular values were removed, Eq. (11) is
written using the reduced-order matrices

0 = Uncw Sncw VT q

new

36 x 1 36 x4 4x4 4x36 36x1. (12)

By comparing Eqgs. (11) and (12), the reduction in size of
the matrices involved is clearly evident. The direct
problem involves applying Eq. (11) to obtain the tem-
perature profile () for a given heat flux profile (q). In
the inverse heat conduction problem, 0 is specified and
Eq. (12) is solved for q

q= VoS U 0 (13)

new —new

3. Interpretation of singular value decomposition applied
to inverse heat conduction problems

Since the rows of U are orthonormal it follows that
0 = U[U"0]. If the columns of U were obtained by dis-
cretizing appropriate sine waves then UTO will contain
the frequency components from the Fourier series of .
The data are filtered by selectively removing frequency
components from UTO, e.g., employing U:ewe. The fil-
tered temperature data are recovered from the truncated
data through the following equation from the original
temperature data:

0ﬁltered = Unew I_UT GJ . (14)

new

To investigate what type of filtering is taking place in the
SVD approach, the columns of U and their power
spectrum are plotted, Figs. 2 and 3, respectively. The
profiles presented in Fig. 2 indicate the columns of U are
sinusoidal-like with increasing frequency with respect to
column number. Fig. 3 illustrates that each row contains
a very narrow band of frequencies. Therefore, each row
of U acts upon the measured temperature, 0, as a band-
pass filter. The frequencies corresponding to the maxi-
mum amplitude of each band-pass filter are plotted
against the corresponding singular values in Fig. 4.

0 10 20 30 40

Row Number

Column5 — — —Column 15

Fig. 2. Columnar values of U.
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Fig. 3. Power spectrum of U.
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Fig. 4. Diagonal values of S (diagonals of S versus frequency,
rows 1-35).

The second step involves determining the number of
frequencies to be truncated. This is done by looking at
the singular values and considering the signal-to-noise
ratio contained in 0, Fig. 4. The last two singular values
are zero within numerical precision and this is consistent
with the delay time in the pulse affecting the location of
interest. The inversion process in (14) requires obtaining
the reciprocal of the singular values. Small singular
values will result in large reciprocals that will amplify
corresponding frequency components. Fig. 5 shows the
degree of amplification versus frequency. Noise in the
temperature data will also be amplified. The number of
required columns and rows in S, can be determined by

3 3000 ¢

S 2500 {

5 E

S 2000 +

e |

7] 1500 E Severe

© i Amplification

§ 1000 E ofNoise

g s+

§ 0:‘ t e B B E—
0 2 4 6 8 10 12 14

Frequency (Hz)

Fig. 5. Inverse of S diagonal (reciprocal of S versus frequency,
rows 1-33).

considering the amplification factor of the reciprocal
singular values and the signal-to-noise ratio.

4. Example application

To illustrate the matrix-transform method a standard
test problem [13] is investigated. Consider the one-di-
mensional problem shown in Fig. 1. A known triangular
heat flux as shown in Fig. 6 is applied to the left
boundary and the temperature is recorded at the insu-
lated boundary (x = 1 m).

For the purpose of this example the temperature data
are computed for the triangular heat flux using the
forward problem as expressed by Eq. (6), where M and
P are determined using an exact exponential series em-
ploying a first-order-hold on heat flux, Fig. 7

K2 KK
M(h) = =1+ Kh+——+——+---,
2! 3!
P(h) = K'M(k) —I]R (15)
K*n:  Ki
= |1h + o0 +?+"' R.

q(t) (W/m?)

Heat Temperature
Conducting Data
Material,

11 nodes

k=1W/m-°C s
p=1 kg/m?
cp=1J/kg-°C

x=0 Xx=1m

Fig. 6. Heat flux profile and recorded temperature location.

-005 T T T T
02 04 06 08 1 1.2 1.4

Time (seconds)

o

Fig. 7. Temperature history at insulated boundary (tempera-
ture at x = L versus time, Ax = 0.1 m).
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These temperature data are used in the inverse problem
to try to recover the heat flux history, Fig. 8. Since the
temperature will be extremely precise under these ideal
conditions, the recovered heat flux profile should closely
reproduce the triangular profile.

Fig. 8 illustrates the results for the recovered heat flux
when Ax = 0.1 m. The results of using three different
time-step sizes were compared. Without noise, trunca-
tion of singular values is mainly based on numerical
precision; this translates to limiting the magnitude of the
inverses of the singular values, Table 1. Removing as
many as a hundred “high-frequency” singular values has
negligible effect on the solution as shown for a time-step
of 0.01 s.

The performance of the proposed method is dem-
onstrated by adding a large component of noise (stan-
dard deviation equal to 10% of full scale) to the
temperature data, Fig. 9. Only frequencies with good

0.7

0.5 -
0.4 -
0.3 -
0.2 -
0.1
0.0

-0.1 T T T
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time (seconds)

Heat Flux (W/m?)

Exact delta t = 0.01 seconds — — delta t = 0.02 seconds delta t = 0.04 seconds ‘

Fig. 8. Recovered heat flux profiles using exact temperature
data (heat flux at x = 0 versus time, Ax = 0.1 m).

Table 1
Matrix dimensions using exact data as input
Time-step Number of Size, ® Size, Spew
(s) time-steps
0.01 144 (144 x 144) (44 x 44)
0.02 72 (72 x 72) (32 x 32)
0.04 36 (36 x 36) (21 x 21)
0.40
0.30
g
‘@ 0.20 4
&
o
g 0101
K}
0.00 1
-0.10 ‘ ‘ : : : :
0 02 0.4 06 08 1 1.2 1.4

Time (seconds)

Fig. 9. Noisy temperature input (noisy temperature at x = L
versus time).

signal-to-noise ratios can be recovered with fidelity. This
fact is used to determine the number of singular values
to be used. To this end, the signal and noise power
spectrums are compared in Fig. 10. In actual practice,
the signal and noise spectrums can be estimated from the
measured noisy data by standard signal processing
techniques based on autocorrelation/covariance analysis
[23]. Alternatively, a rough estimate of the noise strength
can be obtained from steady-state measurements or
from the higher-frequency components of the measured
data. The latter statement reflects the fact that at higher
frequencies the noise is expected to dominate the signal.

The recovered heat flux profiles are presented in Fig.
11. The error between the exact and calculated heat flux
with 10% full-scale temperature noise is presented in Fig.
12. Table 2 summarizes the model-reduction process for
these noisy data. Since only frequencies with good sig-
nal-to-noise ratios can be recovered, the reduced models
for the noisy data are seen to be quite small. Frankel and
Keyhani [8] demonstrated a similar reduction in model
size.

In spite of the very noisy data and the seemingly
several orders of the model reduction, Fig. 11 shows and
compares the estimated versus the original heat fluxes.
Some rounding of the corners is observed; however, this
cannot be avoided because the noise obscures this detail.
The solution is optimal in the least-squares sense since
only orthogonal components of the physical model as-

0.008
0.007 -
0.006 -
0.005 -

0.004 + Noise Stronger
0.003 - than Signal

Amplitude?

0.002 -

0.001 . —

0.000 - == === =

-0.001 : : :
0 0.2 04 0.6 0.8 1

Normalized Frequency

Signal — — Noise

Fig. 10. Signal and noise power spectrum plot.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time (seconds)

Heat Flux (W/m?)

Exact

delta t = 0.01 seconds — — delta t = 0.02 seconds

delta t = 0.04 seconds ‘

Fig. 11. Recovered heat flux profiles using noisy temperature
data (heat flux at x = 0 versus time, Ax = 0.1 m).
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Fig. 12. Heat flux error versus time with input noise of 10%
full-scale (heat flux error versus time, Ax = 0.1 m).

delta t = 0.01 seconds — — delta t = 0.02 seconds delta t = 0.04 seconds ‘

Table 2
Matrix dimensions using noisy data as input
Time-step Number of Size, ® Size, Spew
(s) time-steps
0.01 144 (144 x 144) (4 x4)
0.02 72 (72 x 72) (4 x4)
0.04 36 (36 x 36) (4 x4)
0.40
5 0301
£ 0.20
©
2 040 4
5
= 0.00
0.10 ‘ ; ; ; ; ;
0 02 0.4 0.6 08 1 1.2 1.4

Time (seconds)

Exact
Calculated, delta t = 0.02 seconds

Noisy
— — Calculated, deltat=0.01 seconds
Calculated, delta t = 0.04 seconds

Fig. 13. Exact, noisy and calculated temperature profiles at
x = L (temperature at x = L versus time, Ax = 0.1 m).

sociated with unreliable data are discarded. Fig. 13
shows a comparison of the noisy temperatures, the
original temperatures and those calculated using the
forward model and the recovered heat flux shown in Fig.
11.

5. Conclusions

The model reduction method provides an efficient
numerical method for solving inverse heat conduction
problems. Results using standard test problems indicate
that heat flux estimates can be obtained using very noisy
temperature data by properly conditioning the inverse
problem using a reduced-order system of matrices. The
matrix transform model provides two main advantages
for solving inverse heat conduction problems. First, the
reduced-order matrices allow heat flux estimates to be

obtained from temperature data containing large
amounts of noise. Second, there are no ad hoc par-
ameters to specify for the filtering process to provide
reasonable results.
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